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INTRODUCTION

CURRENT GENERATION HIGH-THROUGHPUT AND HIGH-CON-

TENT SCREENING methods have proven valuable in 
accelerating advances in biomedical science. A new 

generation of automated cell incubation and imaging systems 
combined with automated live-cell, high-content analysis soft-
ware can provide a critical platform for quality assurance and 
cell screening. The ability to image and analyze the cells using 
phase contrast images without the introduction of fluorescent 
markers maintains them in their most stable and natural form. 
As compared with fixed-cell approaches, continuous imaging 
allows for more extensive and robust target identification and 
also the accurate identification of assay end points. It enables 
the analysis of how living, complex biological systems, housed 

in a consistent environment and automated setting, respond to 
experimental treatment.

High-content, long-term, label-free assays provide a useful 
tool for drug discovery, toxicology, and bioproduction, as well 
as for stem cell and cancer research. Common applications 
include the quantification of cell region growth, cell counts, cell 
motion, wound healing, apoptosis, neurite outgrowth, angio-
genesis tubule formation, and fluorescence intensity/expression 
levels over time. Walk-away automation is required, and high-
content image analytics (analysis module) must reliably and 
accurately discriminate target structures (cell bodies, cell 
regions, etc.) without human interaction, across a range of 
complex imaging conditions (both biological and systematic).

Live-cell kinetic phenotypes characterizing cells undergoing 
dynamic interactions are highly complex. The conventional 
high-content analytics that rely on simple thresholding on high 
signal-to-noise (S/N) florescence staining are inadequate for 
measuring kinetic phenotypes. Consequently, analytics are 
developed by teams of highly skilled algorithm scientists for 
very specialized assay and imaging conditions,1-14 which is a 
costly and time-consuming process, and the resulting analysis 
modules cannot be easily updated for changing assay condi-
tions such as cell types or imaging platforms. A totally new 
generation of analysis technology is required.

CL-Quant (Nikon Corporation, Yokohama, Japan) is a new 
solution platform for broad, high-content, and live-cell image 
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CL-Quant is a new solution platform for broad, high-content, live-cell image analysis. Powered by novel machine learning 
technologies and teach-by-example interfaces, CL-Quant provides a platform for the rapid development and application of 
scalable, high-performance, and fully automated analytics for a broad range of live-cell microscopy imaging applications, 
including label-free phase contrast imaging. The authors used CL-Quant to teach off-the-shelf universal analytics, called 
standard recipes, for cell proliferation, wound healing, cell counting, and cell motility assays using phase contrast movies 
collected on the BioStation CT and BioStation IM platforms. Similar to application modules, standard recipes are intended 
to work robustly across a wide range of imaging conditions without requiring customization by the end user. The authors 
validated the performance of the standard recipes by comparing their performance with truth created manually, or by custom 
analytics optimized for each individual movie (and therefore yielding the best possible result for the image), and validated 
by independent review. The validation data show that the standard recipes’ performance is comparable with the validated 
truth with low variation. The data validate that the CL-Quant standard recipes can provide robust results without customiza-
tion for live-cell assays in broad cell types and laboratory settings. (Journal of Biomolecular Screening 2010:968-977)

Key words:  image analysis, image recognition, machine learning, live-cell imaging, imaging and incubation systems, cell 
screening, cell proliferation, wound healing
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analysis. Its machine learning technologies and teach-by- 
example interfaces make it possible for nonexperts to quickly 
create scalable and novel image analytics.

CL-Quant contains the following teachable core modules:

1.	 Image segmentation: teachable enhancement of image pat-
terns of interest for cellular region segmentation

2.	 Region partition: teachable enhancement of cell boundaries 
for fine cellular region partition

3.	 Phenotyping: teachable measurement discrimination rules 
for object classification

The key common attributes of these machine learning–
based modules are as follows:

Intuitive learning: teach-by-example interfaces
Fast learning: instant feedback of learning results
Incremental learning: error correction update
Stable learning: maintaining previous outcomes while adding 

new examples
Soft outcome: output confidence values (0-255) rather than 

binary data for flexible use

We used CL-Quant machine learning modules to teach off-
the-shelf, universal analytics called “standard recipes” for 
cell proliferation, cell count, wound healing, and cell motility 
applications, using the standard graphical user interfaces 
without special programming. Similar to application modules, 
standard recipes are intended to work robustly across a wide 
range of assay conditions (different cell types, magnifica-
tions, operators, etc.) without modification by the end user. 
However, recipes are different from traditional modules 
because they encode user teaching rather than image- 
processing programming. Thus, they are a dynamic algorithm 
that can be created or updated through user teaching, rather 
than a fixed algorithm that can be configured through param-
eter modification. Here we report the validation of these fully 
automated standard recipes.

MATERIALS AND METHODS

Imaging system and image acquisition

Live-cell, phase contrast movies were acquired for this 
study using the BioStation CT and IM incubation and imaging 
systems. The BioStation CT allows imaging experiments to be 
conducted without removing the cells from the incubator. 
Consisting of a standard-sized tissue culture incubator with an 
inverted microscope inside, BioStation CT holds 30 vessels 
ranging from 96-well plates to 75-cm2 flasks, which are moved 
between the microscope stage and the vessel rack via a robotic 
device while maintaining precise levels of CO2, humidity, and 
temperature. BioStation CT acquires images from 2× to 40× 
magnification with apodized phase contrast (APC) optics and 

2× to 40× magnification with fluorescent images using 3-color 
LED illumination.

The BioStation IM is a compact cell incubation and moni-
toring system that facilitates a broad array of long-term time 
lapse experiments, including studies of cell growth, morphology, 
and protein expression, by providing consistent environmental 
control of temperature, humidity, and gas concentration in 
combination with phase and fluorescence imaging of excep-
tional quality.

Cell proliferation benchmark images

Forty phase contrast movies of cells growing in culture were 
acquired on the BioStation CT of 7 cell types (CHO, Cos-7, 
HEK193, HeLa, INS1, NIH3T3, PC12), imaged every 30 min 
for 24 to 48 h. The movies were acquired at 2×, 4×, 10×, and 
20× magnifications (10 movies per magnification). For valida-
tion, 5 image frames per movie were stratified sampled to cre-
ate a benchmark data set of 200 images. The samples were 
selected systematically at the frame in the second time point, at 
the 25th percentile time point, 50th percentile (middle) time 
point, 75th percentile time point, and the second to last frame.

Cell count benchmark images

A subset of cell proliferation benchmark images where indi-
vidual cells are distinguishable was used for the cell count 
benchmark data set. We found that individual cells could not be 
reliably identified by eye in the PC12 and INS1 movies even 
after careful image examination, so we removed these from the 
benchmark data set as no truth (discussed below) could be reli-
ably created. Then, 10× images from the 25th percentile time 
point were chosen (40 images), and the resulting benchmark 
data set includes 31 images at 10× magnification.

Wound-healing benchmark images

Six phase contrast movies showing wound closure (cells 
migrating into a scratch in the monolayer culture) of 3 different 
cell types (MDCK, keratinocytes, and fibroblasts) were 
acquired on the BioStation IM and CT at varying sampling 
rates and length. Five frames per movie were stratified and 
sampled as described above to create a benchmark data set of 
30 images.

Cell motility benchmark images

Thirty-nine phase contrast movies of 7 cell types (HeLa, 
NIH3T3, CHO-K1, Cos-7, HEK293, PC12, INS1) were 
acquired on the BioStation IM. Images were acquired once per 
minute. Sequences from the beginning of the movie (minimum 
100 frames) where cells were relatively isolated were used for 
tracking validation.
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Truth creation strategy

Standard recipe performance is validated through compari-
son with truth. Typically, performance is validated through 
comparison with manually created truth.15,16 We used this 
approach for cell counting and cell motility validation. For cell 
proliferation and wound-healing studies, we created optimal 
results by developing a custom recipe for each test movie and 
used this as the truth.

Individual cells were manually counted to provide truth for 
benchmark image sets. One hundred percent sampling of the 
cells in the image was done for cell counting. True cell counts 
were calculated for each data set. For cell motility, true cell 
tracks—linked (x, y, t) vertices for cells in the movies—were 
created manually. Cells that did not divide or leave the field of 
view were chosen (100 cells in total). The truth was reviewed 
and any discrepancies resolved.

Automated quantification

All of the standard recipes perform image background 
detection followed by mask refinement. A segmentation recipe 
for image background detection is taught by drawing. To 
facilitate more robust analysis, multiple pattern channels 
enhancing image content were created, and background detec-
tion was taught using a combined image that encodes the pattern 

information along with the original image. A core set of pattern 
channel–based background segmentation recipes is used for all 
the applications, followed by application-specific refinements 
as described below. The cell-counting recipe uses a teachable 
machine learning technology for mask partition, also described 
below.

Pattern channels

CL-Quant provides pattern channel functions that can be 
taught interactively to generate enhanced images isolating cer-
tain types of image patterns such as bright, dark, and texture. In 
CL-Quant, operators add pattern channels for use in combined 
channel segmentation teaching (Fig. 1E-G). The additional 
patterns improve the accuracy and robustness of segmentation 
by emphasizing relevant patterns for the teaching step.

Segmentation teaching

Users can flexibly teach segmentation recipes using a 
teach-by-example interface and CL-Quant’s machine learning 
technology for image segmentation.17 Figure 1A,C shows 2 
of the teaching images used to create the segmentation recipe 
for 2× and 4× images. The zoomed-in teaching regions (yel-
low boxes) are shown in Figure 1B,D. The user provides the 
software examples by drawing multiple regions of interest 

FIG. 1.  Segmentation teaching for 2× and 4× magnifications. (A, C) We performed segmentation teaching on derived color images combining 
the original image and pattern channels. The color image shows the original image in the red channel, bright pattern image in the green channel, 
and dark pattern image in the blue channel. (B, D) Close-up of teaching regions of interest (ROIs) shown in the yellow rectangles in (A) and (C). 
Green ROIs indicate image patterns for enhancement, red ROIs for suppression, and yellow ROIs for background patterns. (E) Original phase 
contrast, example input image (Chinese hamster ovary [CHO] cells at 2×). (F) Bright pattern image. (G) Dark pattern image.
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(ROIs). Green ROIs specify patterns for enhancement, red 
ROIs specify patterns for suppression, and yellow ROIs 
specify background patterns. The user input creates a soft or 
fuzzy matching model17 where input image pixels are com-
pared with the user teaching, and their likelihood for 
enhancement set membership is encoded into an output 8-bit 

image called a confidence image (Fig. 2, row 2). Figure 2 
illustrates applying the recipe to new images in an execution 
mode. Input images (row 1) are transformed to create confi-
dence images (row 2), which are thresholded to create the 
segmentation masks (blue overlays in row 3), which are 
subsequently refined and quantified. Of course, in execution 

FIG. 2.  Original and confidence images, as well as segmentation masks for the cell proliferation and wound-healing standard recipes. By
column: (A) example 4× cell proliferation image (HeLa), (B) example 20× cell proliferation image (NIH3T3), and (C) example wound-healing 
image. By row: (1) original images, (2) confidence images, and (3) final detection masks shown overlain on the original image. Standard recipes 
must robustly transform a broad range of input images without requiring user modification.
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mode, no user teaching is necessary, and the analysis is fully 
automated.

CL-Quant makes it possible to transform an input image to 
an enhanced image that can be easily segmented using a draw-
ing interface, replacing traditional methods of image process-
ing (i.e., programming or applying image-processing functions). 
This is the most challenging step in image analysis. It can be 
taught using multiple images and is updateable at a later time 
with additional images. It creates a model that is encoded into 
a segmentation recipe that can be automatically applied to 
transform and segment new images.

Partition teaching

Cell region partitioning is the process of identifying indi-
vidual cells in segmented regions. Cell region partition is an 
extremely difficult problem in computing because there are too 
many variables and uncertain factors for a simple algorithm. In 
CL-Quant, users can flexibly teach a partition recipe using a 
drawing interface and a teachable region boundary enhance-
ment technology.

Figure 3A shows an input mask covering the cell region. In 
Figure 3B, the user draws the cutting lines to partition the 
regions into individual cells for cell count and various cell 
measurements. On the basis of the input mask and user cutting, 
CL-Quant obtains individual cell regions that it uses to generate 

teaching data. The machine learning engine creates a member-
ship image (Fig. 3C) based on the individual cell regions. This 
membership image has high values in the center of cells and 
low values in cell boundaries.

The machine learning engine finds the optimal relationship 
between the membership image and the feature images that are 
derived from multiple filtering of the original image in a mul-
tiresolution manner, resulting in the recipe that is the set of the 
best-fitting coefficients. Then the recipe can be applied to 
another (similar) image for cell partitioning. If the cutting 
result is not satisfactory, the user can perform additional teach-
ing in an error correction mode. The created recipe can be 
applied to new images where features are combined into the 
membership images using the fitting coefficients (recipe), and 
cell partitioning is performed based on multiple thresholding 
levels applied to the membership image.

Cell proliferation recipe

Two standard recipes were created: one for 2× and 4× magni- 
fications and one for 10× and 20×. Both recipes generate pat-
tern channels and were taught on the combined pseudo-color 
images where the original and pattern channels are mapped to 
R,G,B (see Fig. 1). Two images from the Chinese hamster 
ovary (CHO) 2× image set were used to teach the 2×/4× seg-
mentation recipe, and 3 images from the CHO 20× image set 
were used to teach the 10×/20× segmentation recipe. In both 
cases, the image background is taught to generate a trans-
formed confidence image where cell regions are dark and the 
background is bright (Fig. 2, row 2). The confidence image is 
thresholded for dark intensities to mask, or segment, the cellu-
lar regions. The cell region detection mask is then refined by 
filling small holes and removing (gating) mask regions based 
on their morphological and intensity characteristics. The area 
and confluency (mask area divided by image area) of the final 
detection mask is measured.

The cell proliferation recipe can be applied to any phase 
contrast movie to quantitatively measure the rate of cell growth 
in terms of cell area and confluency (ratio of the cell region 
area to the image area). Figure 4B shows a representative 
movie and associated growth curve in the CL-Quant software. 
The movie can be advanced using the controls just below the 
displayed image, and the trace plot shows the cell region area 
measurement over time.

Cell counting recipe (10×)

The cell-counting recipe uses the same 10×/20× segmenta-
tion recipe as the cell proliferation recipe above. Cell partition 
teaching was done initially using an image from the Cos-7 cell 
line and updated with an image of the HeLa cell type. The cell 
partition recipe divides a cell region mask into a number of 

FIG. 3.  Illustration of cell partition teaching. (A) Input detection 
mask created by the segmentation recipe. (B) Green lines drawn by 
user to teach the desired partitioning of the input mask. The user-
defined cut regions are used to generate teaching data for the machine 
learning engine. (C) Membership image generated by the machine 
learning engine given the user training. It is used to partition the input 
detection mask into discrete single-cell components.
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individual regions corresponding to individual cells (Suppl. 
Fig. S1); cell counts and individual cell morphology and inten-
sity measures are calculated.

Wound-healing recipe

The wound-healing standard recipe uses the same 2×/4× 
segmentation recipe as the cell proliferation recipe above, but 
its threshold settings are adjusted to segment the “wound” or 
substrate area rather than the cell regions. The detection mask 
is refined by filling holes and removing small detection regions. 
Because the application is intended to measure the shrinkage of 
the wound, the wound is restricted to be less than its original 
size by conditioning later frames with earlier frames, thereby 
ensuring background regions that may appear outside the 
wound area are ignored. The wound area is measured.

Cell motility recipe

The cell motility standard recipe uses the same 10×/20× 
segmentation recipe as the cell proliferation standard recipe. 
After mask refinement, CL-Quant’s motility tracking recipe is 
applied. The tracking module can be simply configured using 
common parameters (max velocity, size, etc.) and performs 
mask-based tracking. It will maintain cell separation over time 
when cells come together. One advantage of using masks for 
tracking is that detailed morphological characterization can be 
done over time, which can be a sensitive metric for comparing 
different experimental conditions.18

The motility recipe can be used to extract a wide array of  
single-cell tracking metrics, including single-cell descriptors of 
movement (i.e., displacement, velocity acceleration, etc.), mor-
phology (i.e., compactness, length-width ratio, etc.), and intensity 

FIG. 4.  CL-Quant screenshot showing processing results for the (A) cell motility and (B) cell proliferation 10× and 20× standard recipes. The 
track overlays (pink and red) show the location of the center of the detection mask in previous time points. Red points in the overlay indicate 
periods where the cell was moving in isolation, and pink points indicate periods where the cell was in contact with other cells. The trace plot 
shows velocity measures over time for the cells shown here. The spreadsheet displays motility metrics (i.e., straight-line distance, total distance) 
at the current timeframe. The timeframe can be advanced using the movie controls just below the image. The cell proliferation processing results 
(C) include cell region detection mask and associated measurements (i.e., cell region area, confluency). Here the detection mask is shown over-
lain, and the cell region area measurement over time is displayed in the trace plot.
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(i.e., mean, total, standard deviation of intensity in the cell). 
Moving averages of these measures can be calculated. In addition, 
measurements and model parameters that describe the entire track 
(i.e., total length, diffusion constant, persistent, etc.) are provided. 
Figure 4A shows a screenshot of a movie after processing in 
CL-Quant. The trace plot data show individual cell velocities for 
the 7 cells (2 are touching) shown in the image over time. The 
spreadsheet below shows motility measurements for the cells at 
the current time point.

Test metrics: cell proliferation and wound healing

Standard recipe result masks and truth masks are compared 
using the following test metrics for sample frame t:

CPoint (t): total truth mask area normalized by the image size aver-
aged over all benchmark images

εp(t): oversegmentation area averaged over all benchmark images 
evaluated relative to truth mask

εm(t): undersegmentation area averaged over all benchmark images 
evaluated relative to truth mask

cP+ (t): expresses oversegmentation as the positive error bar 
extending from the truth mask mean = CPoint (t) + εp(t)

cP– (t): expresses undersegmentation as the negative error bar 
extending from the truth mask mean = CPoint (t) – εm(t)

Because the exact cell border is difficult to recognize and ±1 
pixel detection discrepancy around the lengthy cell region bor-
der can accumulate to large error, we therefore excluded a 
4-pixel region around the truth mask when calculating under- 
and oversegmentation metrics.

The test metrics are defined as follows:

CPoint t
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where

D = number of data sets
ImageSize = image area (must all be the same)
i = data set index
t = sample or time index
areatruth (i, t) = area of truth mask at time point t and data set i
ε+ (i, t) = area of oversegmentation of detection mask at time sample 

t, data set i. Physical meaning = area of (Detectionmask – Truthmask)

ε- (i, t) = area of undersegmentation of detection mask at time 
sample t, data set i. Physical meaning = area of (Truthmask – 
Detectionmask)

Test metrics: cell count

Standard recipe cell counts are compared with manual cell 
counts for each image. The absolute value of the difference 
between the two is divided by the manual counts to obtain the 
percent error of the standard recipe on that image. The mean 
error over all images is reported.

Test metrics: cell motility

Standard recipe tracks and manual tracks are compared 
using the following metrics:

Average object tracking error: number of incorrect tracking time 
points over the entire track divided by the total number of time 
points in the track

Average matching tracking sensitivity: for each truth track, the 
number of objects in the detected track that has ≥10% overlay 
with the truth track, divided by all objects in the truth track

RESULTS

Cell proliferation and wound-healing results

The 3 standard recipes for cell proliferation (2 recipes) and 
wound healing (1 recipe) prove to be robust and accurate across 
a large range of cell lines and movies acquired by different 
operators at different times (Figs. 5-6). The standard recipes 
are closely aligned with custom recipes, proving that a single 
recipe can be created to work well across a broad range of cell 
types. The standard recipes have a tendency to systematically 
oversegment, but the degree of oversegmentation is stable at 
different levels of confluency. Thus, the standard recipe will be 
able to detect the response of the biological system to different 
experimental conditions equally well as the custom recipes.

Cell counting and motility

The cell-counting and motility standard recipes are likewise 
robust and accurate across several cell types and a sizable set 
of validation images and movies (Fig. 7 and Suppl. Fig. S1). 
Cell-counting scoring correlates highly with manual analysis 
(r = 0.985) and has a high degree of accuracy; the mean error 
over all images is only 11.9%. Note that human counters make 
errors as well, and a difference of 16% between human 
counters has been reported,15 so this amount of error is very 
reasonable. The cell motility performance is very good with 
100% average matching tracking sensitivity and 1.63% average 
object tracking error.
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DISCUSSION

Screening systems require walk-away automation, and 
therefore validation of the automated image analysis is neces-
sary. Standard recipes are meant to be used off-the-shelf 

FIG. 7.  Cell count results. Manual and machine scoring of cell 
counts show close correlation (r2 = 0.9849). The mean error over all 
images is 11.9%, which is within the range you would expect to see 
between human counters. Forty images covering 5 cell lines were used 
in the study.

FIG. 5.  Cell proliferation validation data are shown for the (A) 10×, 20× recipe and the (B) 2×, 4× recipe. The curves show the segmentation 
accuracy at the sampled time points (n = 20 images at each time point covering 7 cell lines). The upper error bar, the cP+ (t) value, indicates the 
amount of oversegmentation as compared with the truth, and the lower error bar, the cP– (t) value, indicates the amount of undersegmentation 
relative to the truth. The actual data are shown in Supplemental Tables S1 and S2.

FIG. 6.  Wound-healing recipe validation data. The curves show the 
segmentation accuracy at the sampled time points (n = 6 images at 
each time point covering 3 cell lines). The upper error bar, the cP+ (t) 
value, indicates the amount of oversegmentation as compared with the 
truth, and the lower error bar, the cP– (t) value, indicates the amount 
of undersegmentation relative to the truth. The actual data are shown 
in Supplemental Table 3.
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without modification by end users, and therefore they must be 
robust for a given application over a variety of cell lines and 
operators.

Here we have compared the performance of 2 cell prolifera-
tion standard recipes, one for 2× and 4× magnifications and one 
for 10× and 20× magnifications, with that of multiple recipes 
developed for each cell type and magnification combination. 
Similarly, a single wound-healing standard recipe is compared 
with multiple custom wound-healing recipes. The results show 
that the standard recipe performance is very close in accuracy to 
the custom recipes at all time points as the cells undergo prolifera-
tion and migration. Generally, the standard recipes tend to slightly 
oversegment relative to the custom recipe, and this is a necessary 
accuracy trade-off to achieve robustness across the many cell lines 
and conditions. However, the degree of oversegmentation is stable 
at the different confluency levels, and therefore the standard reci-
pes are equally sensitive to detected changes in migration or pro-
liferation as the custom recipes.

In this study, we have also compared cell-counting and cell 
motility standard recipe performance with manual truth. The 
goal is to show good correlation with manual truth, even 
though manual analysis is also not perfect. The results show 
good correlation and accuracy as compared with truth for the 
cell-counting and cell motility recipes.

Teachable analytics

Teachable analytics address a critical issue in the high-
content analysis (HCA) industry—how to develop novel 
analyses that are robust and scalable with less cost and 
risk. For end users, teachability allows the configuration of 
accurate analyses for their specific research. Indeed, in 
some cases, it could provide a software tool that can be 
tailored to address novel applications that were not even 
conceived of at the time the software was sold. For indus-
try, it provides a way to create a lineup of application 
analyses without needing a team of costly image analysis 
and pattern recognition specialists.

CL-Quant’s learning technologies provide nearly instant 
results in the teaching mode; recipes can literally be devel-
oped in minutes. However, it can take more time to review the 
recipe performance on multiple images and then update the 
recipe with additional teaching in an error correction mode. 
The recipes validated in this study were taught by our junior 
technical staff, and we estimate that the process of recipe 
creation, performance review, and teaching update took less 
than 40 working hours each.

Much of the discussion of supervised machine learning 
technologies for use in HCA has centered on its use for phe-
notyping19-21 after the images have been segmented using 
traditional image analysis methods. In addition to phenotyp-
ing, CL-Quant can be taught for image segmentation, which 

is arguably the most fundamental step in HCA. CL-Quant 
provides teachable interfaces to supervised machine learning 
technologies providing segmentation, object partition, and 
object phenotyping (classification) capabilities. As compared 
with nonsupervised learning methodologies, teaching in 
CL-Quant is much faster, providing instant feedback of the 
teaching results, and only the desired data are generated. For 
example, if you want to segment punctate cells, only cells that 
have a punctate appearance will be detected. In contrast, 
unsupervised learning approaches will detect and cluster all 
foreground patterns (i.e., punctate and flat cells) in the image. 
These would then need to be filtered using a gating or pheno-
type classification step, which increases processing and teach-
ing time.

CONCLUSION

CL-Quant’s machine learning technologies are unique in the 
field. CL-Quant’s flexible segmentation learning technologies 
enable fundamental image analytics for broad applications to 
be quickly developed with less time and cost. In this study, we 
prove that these teachable analytics can be used to provide 
robust and accurate off-the-shelf performance for target appli-
cations. We are leveraging this strength of CL-Quant to quickly 
develop and validate a suite of new application recipes.

ACKNOWLEDGMENT

This research was supported in part by grant number 
6R44MH075498 from the National Institute of Mental Health.

REFERENCES

	 1.	 Pescini Gobert R, Joubert L, Curchod ML, Salvat C, Foucault I, Jorand-
Lebrun C, et al: Convergent functional genomics of oligodendrocyte dif-
ferentiation identifies multiple autoinhibitory signaling circuits. Mol Cell 
Biol 2009;29:1538-1553.

	 2.	 Mutka SC, Yang WQ, Dong SD, Ward SL, Craig DA, Timmermans PB, et al: 
Identification of nuclear export inhibitors with potent anticancer activity 
in vivo. Cancer Res 2009;69:510-517.

	 3.	 Lee S, Lee HG, Kang SH: Real-time observations of intracellular Mg2+ 
signaling and waves in a single living ventricular myocyte cell. Anal Chem 
2009;81:538-542.

	 4.	 Chan EY, Longatti A, McKnight NC, Tooze SA: Kinase-inactivated ULK 
proteins inhibit autophagy via their conserved C-terminal domains using 
an Atg13-independent mechanism. Mol Cell Biol 2009;29:157-171.

	 5.	 Wu HL, Li YH, Lin YH, Wang R, Li YB, Tie L, et al: Salvianolic acid B 
protects human endothelial cells from oxidative stress damage: a possible 
protective role of glucose-regulated protein 78 induction. Mol Cell Biol 
2009;29:157-171.

	 6.	 Okawa Y, Hideshima T, Steed P, Vallet S, Hall S, Huang K, et al: SNX-2112, 
a selective Hsp90 inhibitor, potently inhibits tumor cell growth, angiogenesis, 

 at Countway Library of Medicine on September 22, 2010jbx.sagepub.comDownloaded from 

http://jbx.sagepub.com/


Teachable, High-Content Analytics for Live-Cell, Phase Contrast Movies

Journal of Biomolecular Screening 15(8); 2010	   www.sbsonline.org    977

and osteoclastogenesis in multiple myeloma and other hematologic tumors by 
abrogating signaling via Akt and ERK. Blood 2009;113:846-855.

	 7.	 Tierno MB, Kitchens CA, Petrik B, Graham TH, Wipf P, Xu F, et al: 
Microtubule binding and disruption and induction of premature senes-
cence by disorazole C1. J Pharmacol Exp Ther 2008;328:715-722.

	 8.	 Muniz-Medina V, Jones S, Maglich J, Galardi C, Hollingsworth R, 
Kazmierski W, et al: The relative activity of “function sparing” HIV-1 entry 
inhibitors on viral entry and ccr5 internalization: is allosteric functional selec-
tivity a valuable therapeutic property? Mol Pharmacol 2008;75:490-501.

	 9.	 Moffat J, Grueneberg DA, Yang X, Kim SA, Kloepfer AM, Hinkle G, et al: 
A lentiviral RNAi library for human and mouse genes applied to an 
arrayed viral high-content screen. Cell 2006;124:1283-1298.

	10.	 Perlman ZE, Slack MD, Feng Y, Mitchison TJ, Wu LF, Altschuler SJ: 
Multi-dimensional drug profiling by automated microscopy. Science 
2004;306:1194-1198.

	11.	 Zhou X, Cao X, Perlman Z, Wong ST: A computerized cellular imaging 
system for high content analysis in Monastrol suppressor screens. J 
Biomed Inform 2006;39:115-125.

	12.	 Lindblad J, Wahlby C, Bengtsson E, Zaltsman A: Image analysis for auto-
matic segmentation of cytoplasms and classification of Rac1 activation. 
Cytometry A 2004;57:22-23.

	13.	 Garippa RJ: A multi-faceted approach to the advancement of cell-based 
drug discovery. Drug Discov World 2004;6:43-55.

	14.	 Harada JN, Bower KE, Orth AP, Callaway S, Nelson CG, Laris C, et al: 
Identification of novel mammalian growth regulatory factors by genome-
scale quantitative image analysis. Genome Res 2005;15:1136-1144.

	15.	 Ramm P, Alexandrov Y, Cholewinski A, Cybuch Y, Nadon R, Soltys BJ: 
Automated screening of neurite outgrowth. J Biomol Screen 2002;8:
7-18.

	16.	 Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, 
et al: CellProfiler: image analysis software for identifying and quantifying 
cell phenotypes. Genome Biol 2006;7:R100.

	17.	 Lee JSJ, Oh S: Learnable object segmentation. US Patent Number 
7,203,360, April 10, 2007.

	18.	 Oh S, Alworth SV, Kandere-Grzybowska K, Borisy GG, Grzybowski BA, 
Lee JSJ: Automated kinetic analysis in individual cell motility assays 
[poster]. Paper presented at the 46th annual meeting of the American 
Society for Cell Biology, December 2006, San Diego, CA.

	19.	 Huh S, Lee D, Murphy RF: Efficient framework for automated classi-
fication of subcellular patterns in budding yeast. Cytometry A 
2009;75:934-940.

	20.	 Solyts B, Alexandrov Y, Remezov D, Swiatek M, Dagenais L, Murphy 
S, et al: Learning algorithms applied to cell subpopulation analysis in 
high content screening [poster]. Paper presented at the 10th annual 
conference of the Society for Biomolecular Sciences, September 2004, 
Orlando, FL.

	21.	 Jones TR, Carpenter AE, Lamprecht MR, Moffat J, Silver SJ, Grenier JK, 
et al: Scoring diverse cellular morphologies in image-based screens with 
iterative feedback and machine learning. Proc Natl Acad Sci USA 
2009;106:1826-1831.

Address correspondence to:
Samuel V. Alworth 

 DRVision Technologies LLC  
15921 NE 8th St., Suite 200, Bellevue, WA 98008 

E-mail: sama@drvtechnologies.com

 at Countway Library of Medicine on September 22, 2010jbx.sagepub.comDownloaded from 

http://jbx.sagepub.com/

